
A Reliability Benchmarking Method for Linux

Zhangjun Lu, Wei Zhang, Hao Xu, and Jianhui Jiang∗
School of Software Engineering, Tongji University, Shanghai, China

2131482@tongji.edu.cn, 1910134@tongji.edu.cn, 2131483@tongji.edu.cn, jhjiang@tongji.edu.cn
*corresponding author

Abstract—The main challenges faced in conducting reliability
assessment of highly reliable computer products by using
traditional methods are high cost, long cycle, and low au-
tomation level. Although the reliability model based on small
samples can acquire reliability attributes, the time expenditure
remains significant. The accelerated life testing method is
still in the exploratory stage due to the complexity of failure
mechanisms in highly reliable computer products. This paper
presents an implementation scheme of dependability bench-
marking for reliability assessment of Linux operating system.
The benchmarking results obtained can be used to compare
the differences in reliability of different Linux distributions.
The occurrence process of Linux kernel faults is modeled as
Poisson process, and the timing of fault injection is determined
according to the rule of exponential distribution of fault
occurrence interval. The faults composing the fault injection
sequence are derived from a validated fault mode library, in
which the proportion of the number of fault modes of different
kernel functional modules is used to characterize the spatial
distribution of faults in actual situations. The selected stable
operating phase software reliability model is an exponentially
distributed homogeneous Poisson process model. It can pro-
duce reference values for the main reliability attributes of
Linux, such as failure rate, Mean Time to Failure (MTTF),
and reliability function. We also develop a tool prototype
based on the proposed implementation scheme and use it for
reliability assessment of CentOS Stream 8, AnolisOS-8.4-GA,
openSUSE 15.3, Ubuntu 20.04.3, Fedora 35 and openEuler-
20.03-LTS-SP3 Linux distributions released during the same
period.

Keywords–Linux; reliability assessment; dependability bench-
marking; software fault injection

1. INTRODUCTION

Linux is widely favored for its open-source, free, stable,
and secure characteristics, dominating not only in servers but
also in embedded systems, supercomputers, cloud computing
platforms, and other fields [1].
Linux has spawned numerous distributions, each with its
unique development trajectory and community support. Well-
known distributions include Ubuntu and CentOS, which is
built from the source code of Red Hat Enterprise Linux
(RHEL). Additionally, there are emerging distributions such
as openEuler and AnolisOS in recent years.
However, as the scale of Linux expands, functionalities be-
come more complex, and application scenarios diversify, users

increasingly demand higher reliability, security, and other
performance aspects from Linux [2]. This paper focuses on
how to effectively assess the reliability of Linux.
Traditional system reliability assessment methods rely on
failure data collected over a while, such as failure times and
failure intervals. However, for complex software, methods
based on on-site failure data collection typically take long
evaluation cycles. Meanwhile, the method of reliability testing,
due to the low automation level in the test case generation
process, are also time-consuming and labor-intensive. There-
fore, the concept of dependability benchmarking based on fault
injection has been proposed [3]. The core idea is to introduce
faults into the target system according to pre-selected fault
models through certain strategies, collect behavioral data of the
system under the injected faults, conduct reliability analysis,
and obtain measurable attributes, such as fault coverage rate,
error latency, error rate, etc. The general principles of depend-
ability benchmarking defined by DBench [4] and ISO/IEC
25045 [5] have been specifically applied to several different
domains. The most notable benchmark tests target operating
systems (including UNIX and Windows [6], [7]), DBMS [8],
embedded systems [9], cloud services and infrastructure [10],
among others. These studies define methods for evaluating
reliability-related attributes of specific target systems, such as
throughput, response time, and error rates, as well as operating
system restart time and fault severity.
To reduce costs while obtaining the main reliability attributes
of computer products, research efforts have mainly focused
on three areas. Firstly, models for software reliability assess-
ment under small-sample failure data conditions have been
developed [11]. Although this approach reduces the demand
for the number of samples, obtaining small-sample failure
data is still time-consuming and labor-intensive for high-
reliability systems. Secondly, more failure data is obtained
by conducting accelerated life tests [12]. This method draws
on the principle of hardware reliability assessment based on
accelerated life test, but is limited by our understanding of
the failure mechanism of computer products. Moreover, it is
lack of explainability, and is still in the exploratory stage of
research. The third one is to simulate the real fault situation of
computer products by designing fault injection mechanism and
strategy. For example, factors such as fault type distribution
and fault spatial distribution of the tested object are considered
in [13], but key factors such as fault time distribution still
depend on the hypothesis.
This paper presents an implementation scheme of dependabil-
ity benchmarking for reliability assessment of Linux operating

177

2024 IEEE 24th International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

2693-9371/24/$31.00 ©2024 IEEE
DOI 10.1109/QRS-C63300.2024.00033

system. The benchmarking results obtained can be used to
compare the differences in reliability of different Linux dis-
tributions. By simulating the actual fault occurrence, interface
errors are injected into the Linux kernel to obtain the failure
data with statistical significance. Subsequently, we input the
failure data into an appropriate software reliability model to
derive reference values of the main reliability attributes for
different distributions of Linux.
The main contributions of this paper are as follows:

• We analyze the temporal distribution of real Linux faults
and establish a model of the occurrence process of Linux
kernel faults using the Homogeneous Poisson Process (HPP)
model. Analysis of fault reports from the Kernel community
revealed that the occurrence intervals of Linux kernel faults
follow an exponential distribution.

• We present an implementation scheme of dependability
benchmarking for reliability assessment of different Linux
distributions. The temporal and spatial distribution of real
faults are used to guide fault injection experiments. Each
fault injection experiment generates a statistically significant
set of failure data. Inputting these failure data into a software
reliability model can produce reference values for the main
reliability attributes of Linux, such as failure rate, Mean
Time to Failure (MTTF), and reliability function.

• We develop a tool prototype based on our scheme, and
used it to compare the reliability of six Linux distributions
released during the same period, i.e. CentOS Stream 8,
AnolisOS-8.4-GA, openSUSE 15.3, Ubuntu 20.04.3, Fedora
35 and openEuler-20.03-LTS-SP3. The experimental results
show that AnolisOS, openEuler, openSUSE, Ubuntu and
Fedora have similar stability and reliability, among which
openSUSE is the most stable and reliable, while CentOS
has relatively poor stability and reliability.

2. RELATED WORK

Currently, the main challenges faced in evaluating high-
reliability computer products using traditional reliability as-
sessment methods include high evaluation costs, long evalua-
tion cycles, and low automation levels. To address this issue,
researchers have proposed the use of dependability bench-
marking based on fault injection [3]. An earlier research work
was the DBench project [4]. Subsequently, many studies have
defined reliability benchmarks for different types of systems
(e.g., OLTP systems, embedded systems) [14]. These studies
define methods for evaluating specific target systems, such
as throughput, response time, error rate, as well as operating
system restart time, and fault severity. For example, [8] extends
the TPC-C standard performance benchmark [15], specifying
the metrics and steps required to evaluate the performance
and reliability characteristics of OLTP systems and compares
two different versions of the Oracle transaction engine running
on two different operating systems. [10] proposes a reliability
benchmark to support NFV providers in making informed
decisions, and determining which virtualization, management,
and application-level solutions can achieve optimal reliability.

For operating systems, Duraes et al. [6] utilized software
faults within device drivers as fault payloads to conduct
reliability benchmark testing on three Commercial Off-The-
Shelf (COTS) operating systems (Windows NT4, Windows
2000, and Windows XP). They ranked the target operating
systems based on the severity of their fault patterns. Kalakech
et al. [7], on the other hand, meticulously considered the
role of workloads. They used actual workloads instead of
synthetic test drivers and conducted reliability benchmark
testing on Windows NT, Windows 2000, and Windows XP
in scenarios where faults existed in user applications. They
compared the fault patterns and performance of these systems,
including response times and reboot times. Cotroneo et al.
[16] performed fault injection on Android, categorizing the
impacts of system-level faults into Crash, ANR (Application
Not Responding), Fatal, and No Failure, to assess the impact
of Android faults on user experience quality.
However, so far, the dependability benchmarking mainly pro-
vide directly measurable attributes such as fault coverage rate,
error latency, error rate, etc., making it difficult to provide
comprehensive metrics such as reliability, availability, etc. To
obtain the main reliability attributes of computer products,
in addition to traditional reliability assessment methods, re-
searchers have conducted a series of research works. [11], [17]
attempts to reduce the demand for the number of samples by
constructing models for software reliability assessment that
can accurately work with small-sample failure data, thereby
reducing the time and effort required to obtain failure data.
However, for high-reliability systems, obtaining small-sample
failure data remains time-consuming and labor-intensive. [12]
obtains more failure data through accelerated life tests, it
treats fault conditions as stress and injects software faults
into the runtime support environment of the test object. By
constructing different stress levels based on factors such as
fault quantity and severity, reliability attributes under normal
stress levels are estimated based on failure data under different
stress levels. However, due to our limited understanding of
the failure mechanisms of computer products, this method has
poor interpretability and is still in the exploratory stage of
research. [13] considers factors such as the distribution of
fault types and fault spatial distribution when designing the
fault injection mechanism. However, critical factors such as
the temporal distribution of faults still rely on assumptions.

3. THE TEMPORAL AND SPATIAL DISTRIBUTION OF LINUX
KERNEL FAULTS

3.1 Basic Concept
Here are some basic concepts:
Fault/Error refers to the faults/errors in the relevant kernel
functions and system calls that constitute the Linux kernel.
Failure refers to operating system level failures caused by
faults/errors in the Linux kernel. It includes crashes, unrespon-
siveness, partial functionality unavailability, and degradation
of performance metrics beyond thresholds.
Temporal Distribution of Faults refers to the statistical dis-
tribution followed by the occurrence times of faults in the

178

relevant kernel functions and system calls that constitute the
Linux kernel.
Spatial Distribution of Faults refers to the proportion of faults
in different kernel functional modules of Linux. It is used to
simulate the real occurrence probability of faults in the relevant
kernel functions and system calls of different kernel functional
modules.

3.2 Modeling the Occurrence Process of Linux Kernel Faults
Based on the HPP Model

To demonstrate the feasibility of modeling the occurrence pro-
cess of internal faults within Linux kernel functional modules
by using the Poisson Process, we collected fault reports from
various kernel main functional modules (Kernel, FileSystem,
MemoryManagement, ProcessManagement, IO/Storage, Net-
working) in the Linux 4.19, 5.4, 5.10 , and 5.15 version from
the official release to March 1, 2024. After removing entries
with unclear descriptions, user mishandling, or marked as
duplicates or unreproducible, 66 fault records were identified
for the 4.19 kernel version , 70 for the 5.4 kernel version,
60 for the 5.10 kernel version, and 58 for the 5.15 kernel
version. We fitted the distribution of time intervals of these
fault records, the results are shown in Figure 1. While the
significance level α = 0.05, for 4.19 kernel version, the result
of K-S test is 0.16042, which is less than the critical value

equals 0.16443. For the 5.4 kernel version, the result of the K-
S test is 0.15748, which is less than the critical value equals
0.15975. For the 5.10 kernel version, the result of the K-S
test is 0.1039, which is less than the critical value equals
0.17231. For the 5.15 kernel version, the result of the K-S test
is 0.16696, which is less than the critical value equals 0.17519.
To sum up, it can be considered that the time intervals of
internal faults within Linux kernel functional modules follow
an exponential distribution.
Defects that cause internal failures of kernel functional mod-
ules are not fixed after an operating system failure is ob-
served. Therefore, the fault generation process within Linux
kernel functional modules exhibits a stationary and indepen-
dent increment characteristic. Based on this characteristic and
the conclusion that the fault intervals follow an exponential
distribution, we can employ the HPP model to describe the
occurrence process of Linux kernel faults. Within any time
interval of length t, the occurrence frequency of faults in
Linux kernel functional modules can be considered to follow
a Poisson distribution with a mean of θt.

P{N(t+ q)−N(q) = u} = e−θt (θt)
u

u!
, u = 0, 1, ... (1)

The time interval between two consecutive faults within Linux
kernel functional modules follows an exponential distribution

(a) Fault interval of Linux 4.19 follows an exponential distribution (b) Fault interval of Linux 5.4 follows an exponential distribution

(c) Fault interval of Linux 5.10 follows an exponential distribution (d) Fault interval of Linux 5.15 follows an exponential distribution

Figure 1. The fitting results of the time interval distribution of Linux faults

179

with a parameter θ. Here, θ reflects the frequency of faults
occurring within the Linux kernel functional modules.

P{Xn > t|Xn−1 = q} = e−θt (2)

3.3 The Proportion of Faults in Different Kernel Functional
Modules of Linux

We use the proportion of faults in different kernel functional
modules of Linux to describe the spatial distribution of Linux
kernel faults. The determination of the proportion of faults in
different kernel functional modules of Linux depends on the
construction process of the Linux fault mode library [18].
The Linux kernel comprises five major functional modules, i.e.
file system (fs), interrupt management (int), process manage-
ment (pro), memory management (mem), and I/O management
(io). The kernel functions are numerous and highly complex,
making direct failure analysis of its code time-consuming.
Analyzing system calls can help in summarizing these fault
modes. We mainly focus on system calls associated with the
above modules.
Additionally, we inject Orthogonal Defect Classification
(ODC) defects into the Linux kernel code and extract fault
modes related to Linux system calls. By comparing them with
fault modes obtained through code analysis, it can confirm the
correctness of existing fault modes in the Linux kernel fault
mode library. Those mismatched fault modes will be added as
new fault modes to the fault mode library.
Figure 2 depicts the distribution of fault modes collected in
the Linux kernel fault mode library across different kernel
functional modules. Assuming equal probabilities for all fault
modes, these proportions indicate the likelihood of a single
fault occurring within each kernel functional module, thus
partially reflecting the spatial distribution characteristics of
Linux kernel faults.

4. LINUX KERNEL FAULT INJECTION SEQUENCE GENERA-
TION

To obtain failure data with statistical significance, it is imper-
ative to develop a sound fault injection strategy that simulates
real-world failure scenarios. This entails creating a fault injec-
tion sequence that accurately reflects genuine fault incidents,
which can then be utilized to steer a fault injection experiment.
When formulating the fault injection sequence, it is essential
to account for the temporal and spatial distribution of faults,
alongside adhering to constraints regarding the number of
faults.

4.1 Select the Appropriate Model Parameter θ

The temporal distribution of internal failures occurring in
Linux kernel functionality modules depends on the values of
parameters n and θ. Here, n represents the number of faults
contained in the injected fault sequence, while θ characterizes
the frequency of faults in the Linux fault temporal distribution
model. The relationship between θ, n, and the time overhead
T required for injecting a fault sequence can be expressed as:

θ = n/T (3)

Figure 2. Proportion of faults in Linux kernel modules

According to the analysis of open-source community data, the
actual θ = 6.8722 × 10–7 faults per second. To obtain 100
failure data records, it would require approximately 1684 days
of continuous observation experiments on Linux, which leads
to a prohibitively high cost. Therefore, it is necessary to select
an appropriate θ to expedite the acquisition of failure data.
[19] provides experimental data on fault impact analysis
conducted on a PowerEdge R630 equipped with two Intel®
Xeon® E5/2650 processors. The results indicate that, for the
Linux system, aside from cases where no impact is observed,
over 93% of fault impacts manifest shortly after fault injection,
with almost all impacts occurring within 50s after injection.
Our previous fault impact analysis work also demonstrated
that the majority of fault impacts manifest within a short
period. To ensure that each fault impact is detected and
captured by monitoring tools before the next fault injection, we
aim to maximize the time interval between consecutive fault
injections in the generated fault injection sequence, with the
interval preferably exceeding 50s. Simultaneously, to minimize
time overhead, it is necessary to set a maximum time interval.
Therefore, we select θ such that the 5th percentile of the
interval time is greater than 50 seconds, while the value
adjacent to the 95th percentile is chosen as the maximum time
interval.

P (X ≤ 50) = 1− e−50θ ≤ 0.05 (4)

P (X > t0.95) = e−tmaxθ = 0.05 (5)

Based on Equation (4), θ ≤ 0.001025, it is suggested to set
θ = 0.001. Furthermore, according to Equation (5), t0.95 =
2995, hence the maximum interval time can be set to 3000
seconds. During the generation process, if an interval time
exceeds the maximum interval time threshold, the time points
should be regenerated. Considering Equation (3), theoretically,
T is around 9× 104 seconds, but practically, T is determined
by the actual time overhead of the generated fault injection
sequence.

4.2 Linux Kernel Fault Mode Library and Fault Injection
Target

In this paper, we adopt the Linux precise fault injection
technique based on kernel functions [18]. To identify potential
kernel fault modes stemming from defects in Linux kernel
code [20], we utilize a combination of methodologies, in-
cluding system call anomaly analysis, expert knowledge, user

180

experience, and historical data from similar systems. These
fault modes serve to characterize the potential impacts of
Linux kernel interactions with upper-layer applications. By
injecting interface errors at the kernel function layer, we
simulate these fault modes and construct a fault mode library.
Several prior works [21], [22] have discussed representative
issues concerning function call interface errors. We have also
discussed this issue in [23], By using finite state machine to
generate representative code variation errors as a benchmark,
and collecting function call interface data to analyze the
representativeness of function call interface errors. Experimen-
tal results show that 62% of all crashes, hangs, and wrong
terminations of SPEC benchmark program occurred with
interface errors. We calculated the theoretical lower bound
(LB) and upper bound (UB) of the function call interface
error frequency. The high LB (46%) and UB (68%) interface
corruption rates indicate that function call interface error is a
type of major effect of software defects [23].
Figure 3 illustrates the objectives of fault injection in Linux.
Interface errors, such as incorrect parameters or erroneous
buffer data, are injected at the kernel function layer to precisely
simulate potential fault modes in the Linux kernel. Activation
of these injected errors can lead to runtime failures in Linux,
thereby impacting the performance of the Linux system and
potentially causing system crashes.

4.3 The Proportion of Faults in Different Kernel Functional
Modules of Linux

We utilize the proportion P of fault modes originating from
different kernel functionality modules to simulate the spatial
distribution of Linux kernel failures in real-world scenarios.
P is defined as: P = {pfs, pint, pio, pmem, ppro}, where pfs,
pint, pio, pmem, ppro represent the proportions of fault modes
originating from the file system module, interrupt management
module, I/O management module, memory management mod-
ule, and process management module, respectively. Based on
the fault mode library [18], we specify pfs = 44%; pint = 8%;
pio = 22%; pmem = 6%; ppro = 20%.

4.4 Constraints on the Number of Faults Contained in a Fault
Injection Sequence

The fault injection sequence’s fault count constraint refers to
the minimum number of faults nmin that should be included in
the sequence when generating fault injection sequences. As a
sample from the fault mode library, the fault injection sequence
should have a failure ratio similar to that of the overall
population. [24] discusses how to determine the number of
faults in a fault injection sequence given the total population
size, allowable error, and confidence interval. Assuming equal
probabilities of fault occurrences, the actual number of faults
n in the injected fault set can be considered to satisfy the
following relationship with a given nmin, a given error e,
total population size NT , the standard deviation z at a given
confidence level α, and the characteristic value k:

nmin =
NT

1 + e2 × NT−1
z2×k×(1−k)

(6)

Figure 3. Fault injection target for Linux

n = ceiling(nmin, 10) (7)

When extracting no fewer than nmin fault modes from a fault
mode library with a total of NT fault modes to generate a
fault injection set, the error of the fault injection set compared
to the failure ratio of the fault mode library falls within the
given error e at a confidence level α, where n is nmin rounded
up to the nearest multiple of 10. Since the value of k is
unknown a priori, a conservative approach is to use the value
that maximizes the sample size, ensuring that regardless of
the actual value of the proportion, the sample size chosen
will be sufficient to guarantee the desired confidence level and
error range. It has been proven in [24] that in all cases, using
k = 0.5 is sufficient.
Since the above conclusion is established under the assumption
of equal probabilities of fault occurrences, it is necessary
to adhere to a uniform distribution during random sampling.
Therefore, we conduct stratified random sampling on the fault
mode library, determining the number of faults to be extracted
from each module based on the proportion of faults originating
from different kernel functionality modules and the number
of faults in the fault injection set. Subsequently, we perform
simple random sampling on the fault subsets of each module
using a random number table method.

4.5 Fault Injection Sequence Generation Algorithm

The fault injection case c can be defined as a triple <
ts,m, f >, representing the injection of a fault mode f
into a specific kernel functionality module m of Linux at
a certain time ts. Meanwhile, a fault injection sequence is
derived from n fault injection cases, sorted by the occurrence
time ts, denoted as C = {c1, c2, c3, . . . , cn|ci.t < ci+1.t, i ∈
[1, n− 1], i ∈ N+}, where ts follows the time distribution of
fault occurrences, m complies with the proportion of faults
originating from different Linux kernel functionality modules,
and n satisfies the constraint on the number of faults included
in the fault injection sequence.
The following algorithm outlines the generation process of the
fault injection sequence with a time complexity of O(n):
• STEP 1: Calculate the minimum number of faults nmin

required for the fault injection sequence under given e, α,
and NT , rounding up to the nearest multiple of 10 as the
number of faults n in the fault injection sequence.

• STEP 2: Generate n timestamps tsi according to the time
distribution in ascending order, forming a time sequence
TS = {ts1, ts2, ts3, . . . , tsn|tsi < tsi+1, i ∈ [1, n− 1], i ∈
N+} based on the given fault occurrence frequency θ.

181

Figure 4. Benchmarking process for Linux reliability

• STEP 3: Determine the count of faults countmodule to be
extracted from the fault pattern repository for each module
based on the proportion P of faults originating from differ-
ent modules and the number of faults n in the fault injection
sequence. Use the Mersenne Twister (MT) algorithm to
generate random numbers for each module, forming a set
of fault IDs FIDmodule = {fid1, fid2, fid3, . . . , fidn}.
Retrieve fault modes from the fault mode library F =
{f1, f2, f3, ..., fNT } based on the fault IDs to construct the
fault injection set FS = {f1, f2, f3, . . . , fn|fi ∈ F, i ∈
[1, n], i ∈ N+}.

• STEP 4: Combine the elements from FS and TS to form a
fault injection case ci, and arrange all fault injection cases
in ascending order of time ts to construct the fault injection
sequence C.

5. BENCHMARKING LINUX RELIABILITY

5.1 The Evaluation Process for Linux Reliability
The evaluation process for Linux reliability based on fault
injection is depicted in Figure 4. The fault injection sequence
is generated based on the method introduced in Section 3.
The reliability index dataset is used for interval estimation of
reliability indicators, while the normality test and accuracy
requirement test are primarily aimed at ensuring the accuracy
and reliability of the estimates, and these steps will be detailed
in Section 5.2.
To simulate real-world workloads, many performance bench-
marking tools have been widely used in reliability benchmark-
ing of operating systems. In this study, MySQL-TPC-C [15]
and SPEC2006 [25] are selected as the workload sets.
Figure 5 illustrates the implementation process of fault injec-
tion experiments.
Many reliability assessment studies on operating systems [2],
[16], [26], [27] have discussed system failures and provided
detailed classifications. We define Linux system failure to
occur under any of the following conditions:
• System crash, all running tasks are terminated, and the

system is forcibly shut down.

Figure 5. Implementation process of fault injection test

• System not responding, the system is unable to receive user
commands or provide specified services.

• Partial unavailability of system functionalities.
• Degradation of specific performance metrics beyond prede-

fined thresholds.
System crash and no responding are among the most discussed
failure scenarios in research. Typically, failure detection and
data capture are accomplished by setting up crash-handling
procedures. We utilize the Kdump to monitor the system’s
status. When the system crashes or becomes unresponsive,
corresponding log files and core dump files are generated [28].
System calls serve as interfaces through which the Linux
kernel provides services to users, and their return statuses
reflect the availability of system functionalities. We select
commonly used Linux system calls and track their return
statuses using Kprobe on ftrace [29]. When the return value
of a system call is abnormal, it indicates that the functionality
provided by that system call is unavailable.
To identify cases where specific performance metrics degrade
beyond predefined thresholds, we mainly consider response
time and the number of system calls processed per second.
We use strace [30] to capture system call details and calculate
the number of system calls processed per second. Additionally,
the time interval from when a library function is called until
it returns is used to measure the operating system’s response
time.

5.2 Linux Reliability Assessment During Stable Operation

5.2.1 Reliability Evaluation Model

The general principle for selecting a software reliability as-
sessment model [31] is to choose an appropriate model based
on the varying trends of reliability exhibited by failure data.
We conducted a series of Linux fault injection experiments, the
experimental results indicate that the failure data obtained from
fault injection experiments exhibit a stable reliability trend,
suggesting the applicability of software reliability models with
constant failure intensity. Therefore, we select a software

182

reliability model [31] applicable during the stable operation
phase. This model follows an exponential distribution known
as the HPP model, with the data requirement being complete
failure data. Its fundamental assumptions are as follows:

• No modifications are made when defects are found.
• Time between failures follows an exponential distribution.
• Failures are independent of each other.

On the basis of the assumption and the basic theory of
reliability engineering, the interval time xi of the i time
failure is a random variable, which follows the exponential
distribution with λ (failure rate) as the parameter, and its
probability density function is f(xi) = λe−λxi . Assuming
the total number of failures is w, the likelihood function
is L(x1, . . . , xw) =

∏w
i=1 f(xi) = λwe−λ

∑w

i=1
xi . The

expression of λ obtained by maximum likelihood estimation is
shown in equation (8), xi represents the time interval between
failures. In addition, this model can provide reliability metrics
including MTTF = 1

λ , and R(t) = e−λt.

λ =
w∑w
i=1 xi

(8)

5.2.2 Reliability Attribute Estimation

We first focus on estimating the failure rate λ. Let’s assume
that L fault injection experiments have been conducted, result-
ing in L sets of failure data. We obtain a sample of failure
rates with a size of L and use it to estimate the population
mean of the failure rate as the point estimate of λ.
Under the condition of large sample size (L ≥ 30), according
to the Central Limit Theorem, the sample mean of failure
rates approximately follows a normal distribution. Utilizing the
normal approximation method, we set λ̂ as the sample mean,
with S as the sample standard deviation. The point estimate of
the population failure rate is λ̂, and the interval estimate under
a significance level α is given by [λ̂–zα

2
× S√

L
, λ̂+zα

2
× S√

L
].

Based on the λ̂, we obtain the point estimate of the MTTF =
1
λ̂

, and R(t) = e–λ̂t.

5.2.3 Normality Test

To meet the large sample condition for estimating reliability
attributes, it is stipulated that the L should not be less than
30. Under the condition of L ≥ 30, a normality test should
be conducted on the sample data before estimating reliability
attributes in order to satisfy the normal approximation condi-
tion.
When the sample size is small, the Shapiro-Wilk (S-W) test
method is chosen. The significance level α is set to 0.05.
Reliability attributes are estimated only when the p − value
of the current sample exceeds α, indicating that the normal
approximation condition is met. Otherwise, the number of ex-
perimental rounds will increase to ensure an adequate sample
size for estimating reliability attributes. This strategy helps
ensure that the sample size used in reliability assessment meets
statistical requirements, thereby enhancing the accuracy and
credibility of the estimates.

5.2.4 Precision Requirement

We have specified the accuracy requirements for estimating
the failure rate. The interval estimate of the population failure
rate mean at a 95% confidence level is [λ̂–z 0.05

2
× S√

L
, λ̂ +

z 0.05
2

× S√
L

], with an error margin of EM = z 0.05
2

× S√
L

.
It is stipulated that the estimation results are considered to
meet the accuracy requirements and can terminate the iterative
experiments and output the final reliability indicator estimates
only when the error EM obtained from the current sample
size is less than or equal to 5% of the current sample mean.
Otherwise, the number of experimental rounds will increase
to ensure the accuracy and credibility of the estimation.

5.3 Verification

Table 1 shows the configuration information of the verification
experiment environment. CentOS Stream 8 with 4.18 kernel
version is selected as the experiment system.

5.3.1 Verify the Fault Number Constraint of the Fault Injection
Sequence

The constraint on the number of faults affects the selection of
the number of faults included in our generated fault injection
sequences. Choosing too few failures may result in a lack
of completeness and representativeness in the fault injection
sequences. Under the conditions of NT = 2675, α = 0.05,
and e = 0.1, we obtain nmin = 92. Here, we set n = 100 and
conducted 20 experiments, injecting 100 failures each time.
We first conducted Linux failure analysis experiments based
on the fault mode library. Table 2 presents the failure analysis
results. The ”Functional Modules” column identifies different
kernel functional modules, while the ”Fault Injection Num-
ber” indicates the number of fault modes. Failure modes are
categorized into five types: Crash, No Responding, Function
Unavailable, Serious Performance Impact, and Mild Perfor-
mance Impact. Each data entry represents the proportion of
fault modes leading to the corresponding failure mode. From
Table 2, it can be observed that the overall proportion of fault
modes potentially leading to Linux failures is 38.47%.
Figure 6 illustrates the failure rate of the injection fault set
obtained from the 20 fault injection experiments. Considering
a 10% error margin, the ranges of the proportions of fault
modes causing system failures in the 20 sets of injected fault
sets all include 38.47%. This meets the requirement of 95%
confidence when calculating constraints. Therefore, it can be
considered that the injected fault set inherits the characteristics
of the fault mode library, demonstrating a certain degree of
completeness and representativeness. This helps ensure that
the generated fault injection sequences adequately reflect the
possible failure scenarios the system may encounter in real-
world scenarios.

5.3.2 Applicability Verification and Assumptions Testing of
Reliability Evaluation Model

We conducted 50 fault injection experiments and performed
Mann-Kendall (M-K) trend tests on each set of failure data.
Under a significance level of α = 0.05, we found that 46 sets

183

Table 1. Configuration of the experimental environment
Hardware Platform Supporting Tools

CPU Type Intel(R) i7 Workload SPEC2006 & MySQL-TPC-C
CPU Clock (GHz) 2.30 Crash Dump Kdump

Cache (MB) 24 Kernel Tracking Ftrace&Kprobe
Memory (GB) 4 Kernel Debug Crash

Figure 6. Percentage of fault modes that cause Linux failures

of data exhibited a stable trend in reliability. This suggests that
a model with a constant failure intensity should be selected.
During the fault injection experiments, it was observed that
defects leading to failures were not repaired after the failures
occurred, thus satisfying the assumption of not modifying
defects when discovered. According to the HPP model, the
fault intervals within Linux kernel functional modules follow
an exponential distribution. Therefore, it can be inferred that
the failure intervals also follow an exponential distribution,
satisfying the assumption that each failure corresponds to
an exponential lifetime distribution. Since Linux is reset
(restarted) after each failure occurrence, it can be considered
that failures are independent of each other, fulfilling the
assumption of independence between failures. In summary, it
is appropriate to use the software reliability assessment model
for the stable operational phase to evaluate the reliability of
the failure data obtained by this scheme.

6. LINUX RELIABILITY BENCHMARKING TOOL PROTO-
TYPE

6.1 The Structure of Tool Prototype
The prototype of the Linux Reliability Benchmarking Tool
(LRBT) is developed based on the Linux reliability bench-
marking method proposed in this paper. The structure is
illustrated in Figure 7. It primarily consists of a controller,
fault injection sequence generator, fault injector, workload
manager, and failure monitor. The fault injection sequence
generator implements the fault injection sequence generation
algorithm. The workload manager controls the execution of
SPEC and TPC workloads. The fault injector utilizes precise
fault injection technology based on kernel functions [18].
The failure monitor is implemented according to the failure
identification method described in Section 5.1. If the kernel
crashes during testing, then it will reboot with the help of the
Kdump mechanism, and LRBT will continue working with the
help of the fault injection context saved before kernel crash.

6.2 Testing of Tool Prototype
6.2.1 Functional, Performance, and Interface Testing
The black-box testing is conducted on the functions of LRBT
(such as fault injection sequence generation, fault injection,

Figure 7. The structure of the LRBT
failure monitoring, etc.) by using equivalence partitioning and
boundary value analysis methods to design test cases.
The runtime testing is performed on the functionalities in
LRBT with specified runtime requirements by obtaining the
start and end times of executing the targeted functionalities to
verify if they can meet the specified runtime requirements of
LRBT.
A combined approach of black-box and white-box testing is
used to test whether each specified interface in LRBT correctly
transmits the involved data parameters. The testing includes
user interfaces (command-line inputs) and internal interfaces
(such as interfaces between the fault injector and fault mode
library, interfaces between major functional modules and
logging modules, etc.). The test results indicate that LRBT
meets the specified functional, performance, and interface
requirements.

6.2.2 Interference Test
We conducted experiments to verify that LRBT does not
interfere with the results of reliability benchmarking. Firstly,
we compared the performance parameters of the Linux system
with and without LRBT running under the same workload,
including CPU utilization and memory utilization. Table 3
presents the average performance parameters obtained from
50 experiments. It showed that LRBT consumes only a small
amount of system resources and does not affect system per-
formance. Subsequently, fault impact testing was performed
under the same workload, with fault injection experiments
conducted both with and without LRBT running on the target
system. Each fault mode in the fault mode library was tested
10 times to eliminate differences in fault impact that may arise
from incidental factors. The test results under scenarios with
and without LRBT running showed identical failure rates for
the Linux system, with each fault mode exhibiting the same
fault impact.
The above experimental results demonstrate that running LRBT
during experiments does not interfere with the impact of faults,
thereby validating the anti-interference of LRBT.

6.3 Case Analysis
As an application of LRBT, we conducted reliability assess-
ment on six distributions of Linux during the same period,
i.e. CentOS Stream 8, AnolisOS-8.4-GA, openSUSE 15.3,
Ubuntu 20.04.3, Fedora 35 and openEuler-20.03-LTS-SP3. We
compared the measured reliability for these Linux operating
systems. The operating environment configuration information
is given in Table 1.

184

Table 2. Failure analysis results of Linux based on fault mode library
Functional Modules Fault Injection Number Performance Degradation Functional Failure System Failure

No Influence Mild Performance Impact Serious Performance Impact Function Unavailable No Responding Crash
fs 1175 732(62.31%) 184(15.66%) 32(2.72%) 103(8.77%) 45(4.19%) 79(7.35%)
io 593 401(67.62%) 60(10.12%) 23(3.88%) 57(9.61%) 16(2.70%) 36(6.07%)
int 208 131(62.98%) 13(6.25%) 8(3.85%) 2(0.96%) 18(8.65%) 36(17.31%)

mem 160 75(46.87%) 18(11.25%) 8(5.00%) 9(5.63%) 32(20.00%) 18(11.25%)
proc 539 307(56.96%) 68(12.62%) 15(2.78%) 64(11.87%) 48(8.91%) 37(6.86%)
Total 2675 1646(61.53%) 343(12.82%) 86(3.21%) 235(8.79%) 159(5.94%) 206(7.70%)

Table 3. Performance parameter test results
Test Environment Average CPU utilization Average memory utilization

Run only workloads 87.23% 94.77%
Run workloads and LRBT 87.97% 94.93%

6.3.1 Result Analysis

We applied LRBT to six Linux distributions separately (simu-
lating parameters using θ = 0.001, n = 100)). Table 4 presents
the reliability benchmarking results of six Linux distributions.
Based on the accuracy and normality test requirements, 43
fault injection experiments were conducted for CentOS, 33
for AnolisOS, 36 for openEuler, 37 for openSUSE, 32 for
Ubuntu, and 38 for Fedora. The variation in the number
of experiments required to achieve accuracy across different
Linux distributions is primarily due to the randomness in
generating fault injection sequences based on the spatial and
temporal distribution of faults. The purpose of setting accuracy
requirements in reliability benchmarking is to limit the bias
resulting from this randomness and ensure the fairness of
reliability benchmarking.
The test results show that openSUSE has the lowest failure
rate, AnolisOS, openEuler, openSUSE, Ubuntu and Fedora
have little difference in failure rate, while CentOS has a higher
failure rate. The MTTF reference value for CentOS decreases
by 17% and 21%, respectively, compared to other distributions.
Under the load that represents common computationally inten-
sive tasks (SPEC2006) and enterprise database applications
(MySQL TPC-C), AnolisOS, openEuler, openSUSE, Ubuntu
and Fedora can be considered to have similar stability and
reliability. openSUSE is the most stable and reliable, while
CentOS has relatively poor stability and reliability.

6.3.2 Discussion

The method of obtaining failure data by generating fault
injection sequences essentially simulates the temporal and
spatial distributions of failures under actual conditions, by
adjusting the θ to accelerate the acquisition of failure data.
Let the actual failure occurrence frequency be θr, then it can
be deduced that the acceleration ratio is given by AR = θ

θr
.

Taking the experimental results of AnolisOS-8.4-GA as an
example, with θ = 0.001 faults per second, we obtained a
reference failure rate which equals 1.3657 failures per hour.
If we use the failure occurrence frequency provided by the
Kernel community, then θr = 6.8722×10–7 faults per second,
and AR = 1455. By multiplying the failure data by AR
for restoration, we can obtain intuitively plausible estimated
values of reliability attributes, i.e. the actual failure rate equals
9.3862× 10–4 faults per hour, and the actual MTTF equals
1065.4 hours.
While lacking real dataset support prevents us from verifying
the correctness of this restoration approach, it is important

Table 4. Reliability benchmarking results
Linux Distributions Failure Rate(failures/h) MTTF(h) Reliability Function

CentOS Stream 8 1.6183 0.6181 R(t) = 1–e–1.6183t

AnolisOS-8.4-GA 1.3657 0.7322 R(t) = 1–e–1.3657t

openEuler-20.03-LTS-SP3 1.3526 0.7392 R(t) = 1–e–1.3526t

openSUSE 15.3 1.3436 0.7442 R(t) = 1–e–1.3436t

Ubuntu 20.04.3 1.3550 0.7381 R(t) = 1–e–1.3550t

Fedora 35 1.3676 0.7311 R(t) = 1–e–1.3676t

to emphasize the feasibility of this idea. Compared to the
traditional approach of using acceleration equations based on
failure data under stress levels in accelerated life testing, this
method offers better interpretability and rationality. Moreover,
it effectively shortens the reliability assessment cycle for high-
availability targets.

7. CONCLUSION

This paper presented an implementation scheme of depend-
ability benchmarking for reliability assessment of different
Linux distributions. It utilizes software fault injection method
to obtain failure data and ultimately estimate meaningful
reliability metrics. We developed a tool prototype based on the
proposed scheme and applied it to six Linux distributions. The
results show that AnolisOS, openEuler, openSUSE, Ubuntu
and Fedora have similar stability and reliability, among which
openSUSE is the most stable and reliable, while CentOS is
relatively poor in stability and reliability. Furthermore, we
discuss the feasibility of evaluating Linux reliability indicators
by restoring failure data.

ACKNOWLEDGMENT

This work was supported in part by the Alibaba Corporation.

REFERENCES

[1] A. Adekotujo, A. Odumabo, A. Adedokun, and O.
Aiyeniko, “A comparative study of operating systems:
Case of windows, unix, linux, mac, android and ios,”
International Journal of Computer Applications, vol. 176.
no. 39, 2020, p. 16–23.

[2] W. Gu, Z. Kalbarczyk, Ravishankar, K. Iyer, and Z. Yang,
“Characterization of linux kernel behavior under errors,”
In Proceedings of the 2003 International Conference on
Dependable Systems and Networks, San Francisco, Cali-
fornia, USA, June 22 - 25, 2003, pp. 459-468.

[3] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing
dependability with software fault injection: A survey,”
ACM Computing Surveys, vol. 48, no. 3, 2016, p. 1–55.

[4] DBench project, “DBench Final Report,” 2004. [Online].
Available: www.laas.fr/DBench/, Accessed on: Jan. 3,
2024.

[5] I. O. for Standardization, “Systems and Software Qual-
ity Requirements and Evaluation,” ISO/IEC Standard
25010:2011 ed, Vernier, Geneva, Switzerland: Interna-
tional Organization for Standardization, 2011.

185

[6] J. Duraes and H. Madeira, “Multidimensional character-
ization of the impact of faulty drivers on the operating
systems behavior,” IEICE Transactions on Information and
Systems, vol. 86, no. 12, 2003, pp. 2563-2570.

[7] A. Kalakech, K. Kanoun, Y. Crouzet, and J. Arlat, “Bench-
marking the dependability of windows nt4, 2000 and xp,”
In Proceedings of the 2004 International Conference on
Dependable Systems and Networks, Florence, Italy, June
28 - July 1, 2004, pp. 681-686.

[8] M. Vieira and H. Madeira, “Benchmarking the depend-
ability of different oltp systems,” In Proceedings of the
2003 International Conference on Dependable Systems
and Networks, San Francisco, California, USA, June 22 -
25, 2003, pp. 305-310.

[9] J. Duraes and H. Madeira, “Generic faultloads based
on software faults for dependability benchmarking,” In
Proceedings of the 2004 International Conference on De-
pendable Systems and Networks, Florence, Italy, June 28
- July 1, 2004, pp. 285-294.

[10] D. Cotroneo, L. De Simone, and R. Natella, “NFV-
Bench: A dependability benchmark for network function
virtualization systems,” IEEE Transactions on Network
and Service Management, vol. 14, no. 4, 2017, p. 934–948.

[11] J. G. Lou, J. H. Jiang, Z. L. Shen, and Y. L. Jiang,
“Software reliability prediction modeling with relevance
vector machine,” Journal of Computer Research and De-
velopment, vol. 50, no. 7, 2013, pp. 1542–1550. (in
Chinese)

[12] A. Jin, J. H. Jiang, and J. G. Lou, “Web server assess-
ment based on accelerated life test,” Journal of Computer
Research and Development, vol. 47, no. suppl, 2010, pp.
229–236. (in Chinese)

[13] J. W. Hu and J. H. Jiang, “Design and implementation of
a fault injection mechanism for software reliability eval-
uation,” Journal of Computer-Aided Design & Computer
Graphics, vol. 24, no. 6, 2012, pp. 741–751. (in Chinese)

[14] K. Kanoun and L. Spainhower, “Dependability bench-
marking for computer systems,” Wiley-IEEE Computer
Society Press, 2008.

[15] TPC, “TPC,” 2023. [Online]. Available: www.tpc.org/,
Accessed on: Jan. 3, 2024.

[16] D. Cotroneo, A. K. Iannillo, R. Natella, and S. Rosiello,
“Dependability assessment of the android os through fault
injection,” IEEE Transactions on Reliability, vol. 70, no.
1, 2021, p. 346–361.

[17] J. Guo, X. W. Kong, N. X. Wu, and L. Y. Xie, “Weibull
parameter estimation and reliability analysis with small
samples based on successive approximation method,”
Journal of Mechanical Science and Technology, vol. 37,
no. 11, 2023, p. 5797–5811.

[18] H. Xu, Y. X. Hu, B. L. Tan, X. H. Shi, Z. J. Lu, W. Zhang,
and J. H. Jiang, “Fault injection based failure analysis of
CentOS, Anolis OS and OpenEuler,” 2022, arXiv preprint
arXiv:2210.08728.

[19] J. R. Campos, E. Costa, and M. Vieira, “A dataset
of linux failure data for dependability evaluation and

improvement,” In Proceedings of the 2022 IEEE/IFIP
International Conference on Dependable Systems and Net-
works Workshops, Baltimore, Maryland, USA, June 27 -
30, 2022, pp. 88-95.

[20] D. Cotroneo, A. Lanzaro, and R. Natella, “Faultprog:
Testing the accuracy of binary-level software fault in-
jection,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 1, 2018, p. 40–53.

[21] R. Natella, S. Winter, D. Cotroneo, and N. Suri, “Ana-
lyzing the effects of bugs on software interfaces,” IEEE
Transactions on Software Engineering, vol. 46, no. 3,
2020, p. 280–301.

[22] R. Amarnath, S. N. Bhat, P. Munk, and E. Thaden, “A
fault injection approach to evaluate soft-error dependabil-
ity of system calls,” In Proceedings of the 2018 IEEE
International Symposium on Software Reliability Engi-
neering Workshops, Memphis, Tennessee, USA, October
15 - 18, 2018, pp. 71-76.

[23] W. Zhang, H. Xu, Z. J. Lu, and J. H. Jiang, “On error
representativeness of function call interfaces for C/C++
program,” In Proceedings of the 2023 IEEE International
Conference on Software Quality, Reliability, and Security,
Chiang Mai, Thailand, October 22 - 26, 2023, pp. 719-
728.

[24] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert,
“Statistical fault injection: Quantified error and confi-
dence,” In Proceedings of the 2009 Design, Automation
& Test in Europe Conference & Exhibition, Nice, France,
April 20 - 24, 2009, pp. 502-506.

[25] SPEC, “The SPEC consortium: Members and associates,”
2022. [Online]. Available: www.spec.org/consortium/, Ac-
cessed on: Dec. 6, 2023.

[26] W.-I. Kao, R. Iyer, and D. Tang, “Fine: A fault injection
and monitoring environment for tracing the unix system
behavior under faults,” IEEE Transactions on Software
Engineering, vol. 19, no. 11, 1993, p. 1105–1118.

[27] K. Kanoun, Y. Crouzet, A. Kalakech, A.-E. Rugina, and
P. Rumeau, “Benchmarking the dependability of windows
and linux using postmark/spl trade/ workloads,” In Pro-
ceedings of the 2005 IEEE International Symposium on
Software Reliability Engineering, Chicago, Illinois, USA,
November 8 - 11, 2005, pp. 10-20.

[28] The kernel development community, “Kdump,” 2023.
[Online]. Available: docs.kernel.org/admin-guide/kdump/,
Accessed on: Dec. 6, 2023.

[29] The kernel development community, “ftrace,” 2023. [On-
line]. Available: www.kernel.org/doc/html/latest/trace/,
Accessed on: Dec. 6, 2023.

[30] strace, “strace,” 2023. [Online]. Available: strace.io/, Ac-
cessed on: Dec. 6, 2023.

[31] Institute of Electrical and Electronics Engineers, ”IEEE
Recommended Practice on Software Reliability,” in IEEE
Std 1633-2016 (Revision of IEEE Std 1633-2008), 2017,
pp.1-261.

186

